Бутархайг тэнцвэржүүлэх 5 арга

Агуулгын хүснэгт:

Бутархайг тэнцвэржүүлэх 5 арга
Бутархайг тэнцвэржүүлэх 5 арга

Видео: Бутархайг тэнцвэржүүлэх 5 арга

Видео: Бутархайг тэнцвэржүүлэх 5 арга
Видео: Шалгалт өгөхдөө юу анхаарах вэ? 2024, Арваннэгдүгээр
Anonim

Хоёр фракц нь ижил утгатай бол тэнцүү байна. Бутархайг эквивалент хэлбэрт хэрхэн хөрвүүлэхийг мэдэх нь математикийн бүх төрөлд анхан шатны алгебраас дэвшилтэт тооцоолол хүртэл шаардлагатай маш чухал ур чадвар юм. Энэхүү нийтлэлд эквивалент бутархайг үндсэн үржүүлэх, хуваахаас эквивалент бутархай тэгшитгэлийг шийдвэрлэх илүү төвөгтэй аргуудыг тооцоолох хэд хэдэн аргыг өгөх болно.

Алхам

5 -ийн 1 -р арга: Эквивалент бутархайг цэгцлэх

Эквивалент бутархайг олох 1 -р алхам
Эквивалент бутархайг олох 1 -р алхам

Алхам 1. Тоологч ба хуваагчийг ижил тоогоор үржүүлэх

Хоёр өөр боловч ижил тэнцүү бутархай нь тодорхойлолтоороо бие биенийхээ үржвэр болох тоологч ба хуваагчтай байдаг. Өөрөөр хэлбэл, бутархай хэсгийн тоологч ба хуваагчийг ижил тоогоор үржүүлснээр эквивалент бутархай тоо гарах болно. Хэдийгээр шинэ бутархай дахь тоо өөр байх боловч бутархай нь ижил утгатай байх болно.

  • Жишээлбэл, хэрэв бид 4/8 бутархайг аваад тоологч ба хуваагчийг 2 -оор үржүүлбэл (4 × 2)/(8 × 2) = 8/16 болно. Эдгээр хоёр фракц нь тэнцүү байна.
  • (4 × 2)/(8 × 2) нь үнэндээ 4/8 × 2/2 -той ижил байна. Хоёр бутархайг үржүүлэхдээ бид шулуунаар үржүүлж байгаа бөгөөд энэ нь тоологчийг тоологчоор, хуваагчийг хуваах замаар илэрхийлдэг гэдгийг санаарай.
  • Хэрэв та хуваалт хийвэл 2/2 нь 1 -тэй тэнцүү болохыг анхаарна уу. Тиймээс 4/8 × (2/2) = 4/8 хэвээр байх тул 4/8 ба 8/16 яагаад тэнцүү болохыг ойлгоход хялбар болно. Үүнтэй адил 4/8 = 8/16 гэж хэлэхтэй адил юм.
  • Аливаа өгөгдсөн бутархай нь хязгааргүй тооны тэнцүү бутархайтай байдаг. Та эквивалент бутархайг авахын тулд тоон болон хуваагчийг аль ч бүхэл тоогоор үржүүлж болно.
Эквивалент бутархайг олох 2 -р алхам
Эквивалент бутархайг олох 2 -р алхам

Алхам 2. Тоологч ба хуваагчийг ижил тоонд хуваана

Үржүүлэхийн нэгэн адил хуваах аргыг анхны бутархайтай тэнцэх шинэ бутархай хэсгийг олоход ашиглаж болно. Зэрэгцээ бутархайг авахын тулд бутархай хэсгийн тоологч ба хуваагчийг ижил тоонд хуваахад л болно. Энэ процесст нэг сул тал бий - эцсийн хэсэг нь үнэн байхын тулд тоологч ба хуваах аль алинд нь бүхэл тоонуудтай байх ёстой.

Жишээлбэл, 4/8 -ийг эргэн харцгаая. Хэрэв бид үржүүлэхийн оронд тоологч ба хуваагчийг хоёуланг нь 2 -т хуваавал (4 2)/(8 2) = 2/4 болно. 2 ба 4 нь бүхэл тоо тул эдгээр эквивалент бутархай нь үнэн болно

5 -ийн 2 -р арга: Тэгш байдлыг тодорхойлохын тулд үндсэн үржүүлэх аргыг ашиглах

Эквивалент бутархайг олох 3 -р алхам
Эквивалент бутархайг олох 3 -р алхам

Алхам 1. Том хуваагч авахын тулд жижиг хуваагчаар үржүүлэх ёстой тоог олоорой

Бутархайтай холбоотой олон асуудал нь хоёр бутархай тэнцүү эсэхийг тодорхойлох явдал юм. Энэ тоог тооцоолсноор тэгш байдлыг тодорхойлохын тулд бутархай хэсгүүдийг тэнцүүлж эхэлж болно.

  • Жишээлбэл, 4/8 ба 8/16 бутархайг дахин ашиглах. Жижиг хуваагч нь 8 бөгөөд бид 2 -оор үржүүлж том хуваагч авах болно. Энэ нь 16 байна. Тиймээс энэ тохиолдолд тоо нь 2 болно.
  • Илүү хэцүү тоонуудын хувьд та том хуваагчийг жижиг хуваагчаар хувааж болно. Энэ тохиолдолд 16 -г 8 -д хуваасан бөгөөд энэ нь 2 хэвээр байна.
  • Энэ тоо үргэлж бүхэл тоо байдаггүй. Жишээлбэл, хэрэв хуваагч нь 2 ба 7 байвал 3, 5 гэсэн тоо байна.
Эквивалент бутархайг олоорой 4 -р алхам
Эквивалент бутархайг олоорой 4 -р алхам

Алхам 2. Жижиг нэр томъёо бүхий бутархай хэсгийн хуваарилагч ба хуваагчийг эхний алхамаас эхлэн тоогоор үржүүлнэ

Хоёр өөр боловч ижил тэнцүү бутархай нь тодорхойлолтоороо тоологч ба хуваагч нь бие биенийхээ үржвэр юм. Өөрөөр хэлбэл, бутархайн тоологч ба хуваагчийг ижил тоогоор үржүүлснээр эквивалент бутархай гарна. Хэдийгээр энэ шинэ фракцын тоо өөр байх боловч эдгээр бутархай нь ижил утгатай байх болно.

Жишээлбэл, хэрэв бид эхний алхамаас 4/8 бутархайг ашиглаж, тоологч ба хуваагчийг өмнө нь тодорхойлсон тоогоор үржүүлбэл 2 болно (4 × 2)/(8 × 2) = 8/16. Энэхүү үр дүн нь эдгээр хоёр бутархай тэнцүү болохыг нотолж байна.

5 -ийн 3 -р арга: Тэгш байдлыг тодорхойлох үндсэн хэлтсийг ашиглах

Эквивалент бутархайг олох 5 -р алхам
Эквивалент бутархайг олох 5 -р алхам

Алхам 1. Бутархай бүрийг аравтын бутархай тоо болгон тоол

Хувьсагчгүй энгийн бутархай хэсгүүдийн хувьд тэгш байдлыг тодорхойлохын тулд бутархай бүрийг аравтын бутархай тоогоор илэрхийлж болно. Фракц бүр нь үнэндээ хуваах асуудал тул тэгш байдлыг тодорхойлох хамгийн энгийн арга юм.

  • Жишээлбэл, өмнө нь ашиглаж байсан бутархайг ашигла, 4/8. 4/8 бутархай нь 4 -ийг 8 -д хуваасан гэсэн үгтэй тэнцүү бөгөөд энэ нь 4/8 = 0.5 байна. Та бас нөгөө жишээг шийдэж болно, энэ нь 8/16 = 0.5 байна. Бутархай дахь гишүүн байсан хамаагүй, бутархай нь тэнцүү байна хэрэв аравтын бутархайгаар илэрхийлсэн хоёр тоо хоёулаа адилхан байвал.
  • Тэгш байдал тодорхой болохоос өмнө аравтын бутархай илэрхийлэл олон оронтой байж болохыг санаарай. Үндсэн жишээ болгон 1/3 = 0.333 давтаж байхад 3/10 = 0.3 байна. Нэгээс олон оронтой тоог ашиглан эдгээр хоёр бутархай нь тэнцүү биш болохыг бид харж байна.
Эквивалент бутархайг олоорой 6 -р алхам
Эквивалент бутархайг олоорой 6 -р алхам

Алхам 2. Бутархайн тоологч ба хуваагчийг ижил тоонд хувааж эквивалент бутархайг авна

Илүү төвөгтэй бутархай хэсгүүдийн хувьд хуваах арга нь нэмэлт алхамуудыг шаарддаг. Үржүүлэхийн тулд та бутархай тоон хуваагчийг ижил тоонд хувааж эквивалент бутархай авах боломжтой. Энэ процесст нэг сул тал бий. Төгсгөлийн бутархай нь үнэн байхын тулд тоологч ба хуваах аль алинд нь бүхэл тоонуудтай байх ёстой.

Жишээлбэл, 4/8 -ийг эргэн харцгаая. Хэрэв бид үржүүлэхийн оронд тоологч ба хуваагчийг 2 -т хуваавал (4 2)/(8 2) = болно. 2/4. 2 ба 4 нь бүхэл тоо тул эдгээр эквивалент бутархай нь үнэн болно.

Эквивалент бутархайг олоорой 7 -р алхам
Эквивалент бутархайг олоорой 7 -р алхам

Алхам 3. Бутархайг хамгийн энгийн үгээр хялбарчлах

Ихэнх бутархайг ихэвчлэн хамгийн энгийн үгээр бичдэг бөгөөд та хамгийн энгийн нийтлэг хүчин зүйлд (GCF) хуваах замаар бутархайг хамгийн энгийн хэлбэрт шилжүүлж болно. Энэ алхам нь эквивалент бутархайг бичих, тэдгээрийг ижил хуваарилалт руу хөрвүүлэхтэй ижил логикоор хийгддэг боловч энэ арга нь бутархай бүрийг хамгийн бага нэр томъёогоор хялбарчлахыг оролддог.

  • Бутархай нь хамгийн энгийн хэлбэртэй байвал тоологч ба хуваарилагч нь хамгийн бага утгатай байдаг. Жижиг утгыг авахын тулд хоёуланг нь бүхэл тоонд хувааж болохгүй. Энгийн хэлбэрээр байдаггүй бутархайг хамгийн энгийн эквивалент хэлбэрт хөрвүүлэхийн тулд бид тоологч ба хуваарилагчийг хамгийн том нийтлэг хүчин зүйлээр нь хуваана.
  • Тоолуур ба хуваарилагчийн хамгийн том нийтлэг хүчин зүйл (GCF) нь бүхэл тоон үр дүнг өгөхийн тулд тэдгээрийг хуваасан хамгийн том тоо юм. Тиймээс, бидний 4/8 жишээнд, учир нь

    Алхам 4. нь 4 ба 8 -д хуваагдах хамгийн том тоо юм, бид хамгийн энгийн гишүүдийг авахын тулд бутархай хэсгийн тоологч ба хуваагчийг 4 -т хуваах болно. (4 4)/(8 4) = 1/2. Бидний өөр нэг жишээ болох 8/16, GCF нь 8 бөгөөд энэ нь 1/2 утгыг бутархууны хамгийн энгийн илэрхийлэл болгон буцаана.

5 -ийн 4 -р арга: Хувьсагч олохын тулд кросс бүтээгдэхүүнийг ашиглах

Эквивалент бутархайг олоорой 8 -р алхам
Эквивалент бутархайг олоорой 8 -р алхам

Алхам 1. Хоёр бутархайг хоорондоо тэнцүү байхаар цэгцэл

Бид бутархай нь тэнцүү гэдгийг мэддэг математикийн бодлогод хөндлөн үржүүлгийг ашигладаг боловч тоонуудын нэгийг шийдэх ёстой хувьсагчаар (ихэвчлэн x) сольсон байдаг. Ийм тохиолдолд эдгээр бутархай нь тэнцүү гэдгийг бид мэднэ, учир нь тэдгээр нь тэгш тэмдгийн нөгөө талд байгаа цорын ганц нэр томъёо боловч хувьсагчийг олох арга нь ихэвчлэн тодорхой байдаггүй. Аз болоход, хөндлөн үржүүлгийн тусламжтайгаар эдгээр төрлийн асуудлыг шийдвэрлэхэд хялбар байдаг.

Эквивалент бутархайг олоорой 9 -р алхам
Эквивалент бутархайг олоорой 9 -р алхам

Алхам 2. Хоёр тэнцүү бутархайг аваад "X" үсгээр үржүүлнэ үү

Өөрөөр хэлбэл, та нэг бутархайн тоологчийг өөр нэг бутархайгаар үржүүлж, эсрэгээр нь үржүүлээд дараа нь хоёр хариултыг хооронд нь тааруулж шийднэ.

4/8 ба 8/16 гэсэн хоёр жишээг аваарай. Аль нь ч хувьсагчгүй, гэхдээ бид эдгээр ойлголтыг баталж чадна, учир нь тэдгээр нь эквивалент гэдгийг бид аль хэдийн мэддэг болсон. Хөндлөн үржүүлснээр бид 4/16 = 8 x 8 буюу 64 = 64 -ийг авдаг бөгөөд энэ нь үнэн юм. Хэрэв эдгээр хоёр тоо тэнцүү биш бол бутархай нь тэнцүү биш юм

Эквивалент бутархайг олоорой 10 -р алхам
Эквивалент бутархайг олоорой 10 -р алхам

Алхам 3. Хувьсагчдыг нэмнэ үү

Хөндлөн үржүүлэх нь хувьсагч олох шаардлагатай үед эквивалент бутархайг тодорхойлох хамгийн хялбар арга тул хувьсагчдыг нэмье.

  • Жишээлбэл, 2/x = 10/13 гэсэн тэгшитгэлийг ашиглая. Хөндлөн үржүүлэхийн тулд бид 2 -ийг 13 -аар, 10 -ийг x -ээр үржүүлээд дараа нь хариултуудаа бие биетэйгээ тэнцүү болгоно.

    • 2 × 13 = 26
    • 10 × x = 10x
    • 10x = 26. Эндээс бидний хувьсагчийн хариуг олох нь энгийн алгебрийн асуудал юм. x = 26/10 = 2, 6, анхны эквивалент бутархайг 2/2, 6 = 10/13 болгох.
Эквивалент бутархайг олох Алхам 11
Эквивалент бутархайг олох Алхам 11

Алхам 4. Олон хувьсагчтай бутархай эсвэл хувьсах илэрхийлэлд хөндлөн үржүүлэхийг ашигла

Хөндлөн үржүүлгийн хамгийн сайн зүйлсийн нэг нь та хоёр энгийн бутархай (дээр дурдсан шиг) эсвэл илүү төвөгтэй бутархай хэсгүүдтэй ажиллаж байгаагаас үл хамааран яг адилхан ажилладаг явдал юм. Жишээлбэл, хэрэв хоёр бутархай хоёулаа хувьсагчтай бол та эдгээр хувьсагчдыг шийдвэрлэх явцад арилгах хэрэгтэй. Үүний нэгэн адил, хэрэв таны фракцын тоологч эсвэл хуваагч нь хувьсах илэрхийлэлтэй бол (x + 1 гэх мэт), үүнийг хуваарилах шинж чанарыг ашиглан "үржүүлж", ердийн байдлаар шийдээрэй.

  • Жишээлбэл, ((x + 3)/2) = ((x + 1)/4) тэгшитгэлийг ашиглая. Энэ тохиолдолд дээр дурдсанчлан бид үүнийг хөндлөн бүтээгдэхүүнээр шийдвэрлэх болно.

    • (x + 3) × 4 = 4x + 12
    • (x + 1) × 2 = 2x + 2
    • 2x + 2 = 4x + 12, дараа нь бид хоёр талаас 2х хасах замаар бутархайг хялбарчилж болно
    • 2 = 2x + 12, дараа нь бид хувьсагчийг хоёр талаас нь 12 -ыг хасч тусгаарлана
    • -10 = 2x, 2 -т хувааж x -ийг олоорой
    • - 5 = x

5 -ийн 5 -р арга: Хувьсагч олохын тулд квадрат томъёог ашиглах

Эквивалент бутархайг олох 12 -р алхам
Эквивалент бутархайг олох 12 -р алхам

Алхам 1. Хоёр фракцийг гатлаарай

Квадрат томъёо шаарддаг тэгш байдлын асуудлуудын хувьд бид хөндлөн бүтээгдэхүүнийг ашиглаж эхэлдэг. Гэсэн хэдий ч хувьсагчийн нөхцлийг өөр хувьсагчийн нөхцлөөр үржүүлэхтэй холбоотой аливаа хөндлөн бүтээгдэхүүн нь алгебрийг ашиглан амархан шийдэгдэхгүй илэрхийлэлд хүргэж болзошгүй юм. Ийм тохиолдолд та факторинг ба/эсвэл квадрат томъёо гэх мэт арга техникийг ашиглах шаардлагатай болж магадгүй юм.

  • Жишээлбэл, ((x +1)/3) = (4/(2x - 2)) тэгшитгэлийг авч үзье. Нэгдүгээрт, хөндлөн үржүүлгээ хийцгээе.

    • (x + 1) × (2x - 2) = 2x2 + 2x -2x - 2 = 2x2 - 2
    • 4 × 3 = 12
    • 2 - 2 = 12.
Эквивалент бутархайг олох 13 -р алхам
Эквивалент бутархайг олох 13 -р алхам

Алхам 2. Тэгшитгэлийг квадрат тэгшитгэл болгон бич

Энэ хэсэгт бид энэ тэгшитгэлийг квадрат хэлбэрээр бичихийг хүсч байна (ax2 + bx + c = 0), үүнийг тэгшитгэлийг тэг болгох замаар хийдэг. Энэ тохиолдолд бид хоёр талаас 12 -ийг хасаад 2x авна2 - 14 = 0.

Зарим утга нь 0 -тэй тэнцүү байж болно. Хэдийгээр 2x2 - 14 = 0 бол манай тэгшитгэлийн хамгийн энгийн хэлбэр бөгөөд жинхэнэ квадрат тэгшитгэл нь 2х байна2 + 0x + (-14) = 0. Зарим утгууд 0-тэй тэнцүү байсан ч квадрат тэгшитгэлийн хэлбэрийг бичих нь эхэндээ тустай байж болох юм.

Эквивалент бутархайг олоорой 14 -р алхам
Эквивалент бутархайг олоорой 14 -р алхам

Алхам 3. Квадрат тэгшитгэлийнхээ тоонуудыг квадрат томъёонд залгаж шийдвэрлэх

Квадрат томъёо (x = (-b +/- (b2 - 4ac))/2a) нь энэ хэсэгт х утгыг олоход бидэнд туслах болно. Томъёоны уртаас бүү ай. Та зүгээр л хоёр дахь алхам дахь квадрат тэгшитгэлийнхээ утгыг аваад тэдгээрийг шийдэхээсээ өмнө зөв газруудад байрлуулна уу.

  • x = (-b +/- (b2 - 4ac))/2a. Бидний тэгшитгэлд 2х2 - 14 = 0, a = 2, b = 0, c = -14.
  • x = (-0 +/- (02 - 4(2)(-14)))/2(2)
  • x = (+/- (0 - -112))/2 (2)
  • x = (+/- (112))/2 (2)
  • x = (+/- 10.58/4)
  • x = +/- 2, 64
Эквивалент бутархайг олоорой 15 -р алхам
Эквивалент бутархайг олоорой 15 -р алхам

Алхам 4. Х-ийн утгыг квадрат тэгшитгэлдээ дахин оруулж хариултаа шалгана уу

Хоёр дахь алхамаас тооцоолсон x утгыг квадрат тэгшитгэлдээ буцааж оруулснаар та хариултаа зөв авсан эсэхээ амархан тодорхойлох боломжтой болно. Энэ жишээнд та 2, 64 ба -2, 64 -ийг анхны квадрат тэгшитгэлд оруулах болно.

Зөвлөмж

  • Бутархайг эквивалент болгон хөрвүүлэх нь үнэндээ бутархайг 1 -ээр үржүүлэх хэлбэр юм. 1/2 -ийг 2/4 болгон хөрвүүлэхдээ тоологч ба хуваарийг 2 -оор үржүүлэх нь 1 -тэй тэнцэх 1/2 -ийг 2/2 болгон үржүүлэхтэй адил юм..
  • Хэрэв хүсвэл холимог тоог энгийн бутархай болгон хөрвүүлэхэд хялбар болгоно. Мэдээжийн хэрэг, тааралдсан бүх фракцууд нь дээрх 4/8 жишээг хөрвүүлэхтэй адил хялбар биш байх болно. Жишээлбэл, холимог тоонууд (1 3/4, 2 5/8, 5 2/3 гэх мэт) нь хөрвүүлэх үйл явцыг арай илүү төвөгтэй болгож чаддаг. Хэрэв та холимог тоог энгийн бутархай болгон хөрвүүлэх шаардлагатай бол үүнийг хоёр аргаар хийж болно: холимог тоог энгийн бутархай болгон хөрвүүлж, ердийнх шигээ хөрвүүлэх, эсвэл холимог тооны хэлбэрийг хадгалж, холимог тооны хэлбэрээр хариулт авах замаар.

    • Энгийн бутархай болгон хөрвүүлэхийн тулд холимог тооны бүхэл бүрэлдэхүүн хэсгийг бутархай бүрэлдэхүүн хэсгийн хуваагдалаар үржүүлээд дараа нь тоонд нэмнэ. Жишээлбэл, 1 2/3 = ((1 × 3) + 2)/3 = 5/3. Дараа нь хэрэв хүсвэл үүнийг шаардлагатай хэмжээгээр өөрчилж болно. Жишээлбэл, 5/3 × 2/2 = 10/6, энэ нь 1 2/3 -тэй тэнцүү хэвээр байна.
    • Гэсэн хэдий ч бид үүнийг дээрх шиг энгийн бутархай болгон хөрвүүлэх шаардлагагүй болно. Үгүй бол бид бүхэл тоон бүрэлдэхүүн хэсгийг дангаар нь үлдээж, зөвхөн бутархай бүрэлдэхүүн хэсгийг өөрчилж, бүхэл тооны бүрэлдэхүүн хэсгийг өөрчлөхгүйгээр нэмнэ. Жишээлбэл, 3 4/16 хувьд бид зөвхөн 4/16 -ийг л хардаг. 4/16 4/4 = 1/4. Тиймээс, бүхэл тоон бүрэлдэхүүн хэсгүүдийг буцааж оруулснаар бид шинэ холимог дугаар авах болно. 3 1/4.

Анхааруулга

  • Үржүүлэх ба хуваах нь ижил тооны бутархайг авахад ашиглагддаг, учир нь 1 тооны бутархай хэлбэрээр (2/2, 3/3 гэх мэт) үржүүлэх, хуваах нь анхны фракцтай тэнцэх хариултыг өгдөг. Нэмэх, хасах аргыг ашиглах боломжгүй.
  • Хэдийгээр та бутархай үржүүлэхдээ тоологч, хуваагчийг үржүүлдэг ч гэсэн бутархай нэмэх эсвэл хасахдаа хуваагчийг хасдаггүй.

    Жишээлбэл, дээр бид 4/8 4/4 = 1/2 гэдгийг мэддэг. Хэрэв бид 4/4 -ийг нэмбэл огт өөр хариулт авах болно. 4/8 + 4/4 = 4/8 + 8/8 = 12/8 = 1 1/2 эсвэл 3/2, тэд 4/8 -тэй тэнцүү биш юм.

Зөвлөмж болгож буй: